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Universal finite-size scaling analysis of Ising models with long-range interactions
at the upper critical dimensionality: Isotropic case

Daniel Grüneberg* and Alfred Hucht†

Fakultät für Naturwissenschaften, Theoretische Physik, Universita¨t Duisburg-Essen, D-47048 Duisburg, Germany
~Received 10 October 2003; published 9 March 2004!

We investigate a two-dimensional Ising model with long-range interactions that emerge from a generaliza-
tion of the magnetic dipolar interaction in spin systems with in-plane spin orientation. This interaction is, in
general, anisotropic whereby in the present work we focus on the isotropic case for which the model is found
to be at its upper critical dimensionality. To investigate the critical behavior the temperature and field depen-
dence of several quantities are studied by means of Monte Carlo simulations. On the basis of the Privman-
Fisher hypothesis and results of the renormalization group the numerical data are analyzed in the framework of
a finite-size scaling analysis and compared to finite-size scaling functions derived from a Ginzburg-Landau-
Wilson model in zero mode~mean-field! approximation. The obtained excellent agreement suggests that at
least in the present case the concept of universal finite-size scaling functions can be extended to the upper
critical dimensionality.
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I. INTRODUCTION

In the last decade, spin models with long-range inter
tions were the subject of several extensive Monte Carlo s
ies. Utilizing an efficient cluster algorithm@1# these studies
were addressed to the verification of some unproved pre
tions on the critical behavior of spin models with algeb
ically decaying long-range interactions@2#. Furthermore, the
crossover from Ising-like to classical critical behavior w
investigated@3,4# and first numerical results on the critic
behavior of the dipolar in-plane Ising~DIPI! model were
obtained@5#. This two-dimensional model displays a strong
anisotropic phase transition, i.e., the correlation lengths
direction parallel and perpendicular to spin orientation
verge in the infinite system~let t.0) as@5#

j i
(`)~ t !;ĵ it

2n i, j'
(`)~ t !;ĵ't2n' ~1!

at the critical point, where bothĵ iÞĵ' and n iÞn' , and t
[(T2Tc)/Tc denotes the reduced temperature. Except
anisotropy exponentu5n i /n' neither any numerical esti
mates of the critical exponents exist for the DIPI model, n
is it clear whether the model exhibits Lifshitz type critic
behavior@6# as it is observed, e.g., in the anisotropic ne
nearest neighbor Ising model@7–9#.

To address such questions in a broader context we pre
a two-dimensional long-range spin model that arises fr
generalizing the DIPI model by introducing an addition
parameter. AssumingL i3L' geometry and periodic bound
ary conditions this model is described by the Hamiltonian

H52
1

2 (
iÞ j

siJ~r i j !sj2B(
i

si ~2a!
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with magnetic Ising spin variablessi561, the spin-spin dis-
tance vectorr i j , and an external fieldB. The pair coupling
J(r ) is given by

J~r !5Jd ur u,11
v ir i

21v'r'
2

ur u5
~2b!

and consists of both a ferromagnetic short-range nea
neighbor exchange coupling with the coupling constanJ
>0 and a long-range contribution, wherer i and r' are the
components of the vectorr parallel and perpendicular to spi
orientation. Using this general form of the pair couplin
J(r ), several well known spin systems can be mapped o
this model by making an explicit choice of the paramet
v i , v' , andJ. With v i522v'.0, and for symmetry rea-
sons22v i5v'.0, andJ.0 the DIPI model is recovered
and if v i5v'.0 andJ50 Eq.~2a! corresponds to an Ising
model with an isotropic ferromagnetic long-range interact
algebraically decaying asJ(r )}ur u23. Another special case
is the dipolar Ising model with perpendicular spin orientati
@10,11# that can be obtained forv i5v',0 andJ.0.

Figure 1 shows the ground state phase diagram of
model whereby we took into account four different grou
state spin configurations: theferromagnetic statewhere all
spins point to the same direction~fm!, the totally antiferro-
magnetic statethat is referred to as checkerboard sta
~check!, andcommensurate stripe domain stateswith a do-
main wall orientation parallel~mod i) and perpendicular
~mod') to spin orientation and the periodsNi ,' . Dependent
on the values of the quotientsv i /J andv' /J all considered
spin configurations were found as stable ground states.
to symmetry reasons the arrangement of the correspon
phases in Fig. 1 is symmetric with respect to the linev i
5v' . The periodsNi ,' of the stripe domain states diverg
when approaching the dashed lines in Fig. 1.

The region in parameter space where the model displa
ferromagnetic ground state is of particular interest to us
that region the observed phase transitions are isotropic~an-
©2004 The American Physical Society04-1
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isotropic! when v i5v' (v iÞv') whereby in the presen
work we draw our attention to the isotropic ferromagne
long-range case

v i5v'.0, J50 ~3!

before we turn to the case of an anisotropic pair coupl
@12#. It is known that the upper critical dimension of long
range spin models with ferromagnetic interactions decay
as J(r )}ur u2(d1s) is given by du52s @13#. Comparison
with the pair couplingJ(r ) defined in Eq.~2b! yields in the
isotropic case, Eq.~3!, s51 for a two-dimensional system
and consequentlyd5du52.

So in this paper we investigate the critical behavior of
model at its borderline dimensionalitydu by means of Monte
Carlo ~MC! simulations and finite-size scaling methods. F
that purpose in the following Sec. II the finite-size scali
form of the free energy density is discussed and the fin
size scaling relations of the considered quantities are der
as they are used for the finite-size scaling analysis. Th
relations define finite-size scaling functions for which in S
III we evaluate analytical expressions in the framework
the so-called zero mode theory that is based on the Ginzb
Landau-Wilson~GLW! model. In the last Sec. IV the zer
mode results are compared to numerical data within a fin
size scaling analysis.

II. FINITE-SIZE SCALING RELATIONS

To study the critical properties of the model in the isotr
pic long-range case we have carried out a finite-size sca
analysis of MC data. This analysis requires the finite-s
scaling relations of the quantities that were considered in
simulations.

Via a renormalization group approach, Luijten and Blo¨te
@2# derived the scaling form of the free energy density
O(n) spin models with ferromagnetic long-range intera

FIG. 1. The model@Eqs. ~2!# exhibits a ferromagnetic groun
state in the region denoted by ‘‘fm.’’ The dashed linesv i522v'

.0 and 22v i5v'.0, respectively, and the originv i5v'50
also represent ferromagnetic ground states. All other regions c
spond to modulated spin configurations~see text!.
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tions decaying asJ(r )}ur u2(d1s). At the upper critical di-
mension, that is given bydu52 for s51 ~see Sec. I!, the
singular part of the reduced free energy density was foun
scale as (n51)

f s~ t,h;L !;L22 f̃ S u21/3L ln1/6S L

L08
D

3F t2v8L21ln22/3S L

L08
D G ,L3/2ln1/4S L

L08
D hD

~4!

with the reduced temperaturet, the reduced external fieldh
[bB where b[1/(kBT) denotes the inverse temperatu
~we setkB51 throughout this paper!, and the so-called dan
gerous irrelevant variableu @14,15#. Note that we rewrote the
formula given in Ref.@2# in terms of the parametersv8 and
L08 , whereL08 can be regarded as a reference length that fi
the length scale in the logarithms~see also Ref.@16#!, and we
absorbed constant factors intof̃ . The symbol; means ‘‘as-
ymptotically equal’’ and, unless stated otherwise, refers
the limit (t,h,L)→(0,0,̀ ) with tL ln1/6(L) andhL3/2ln1/4(L)
fixed @cf. Eq. ~7!#.

Proceeding from Eq.~4! we adapt the Privman-Fisher hy
pothesis@17# and propose the finite-size scaling form of th
singular part of the reduced free energy density

f s~ t,h;L !;L22Y~xrg ,yrg! ~5!

with the universal finite-size scaling~UFSS! function
Y(x,y). The arguments of this function correspond to t
temperature scaling variable

xrg5C1 t̂ L ln1/6S L

L0
D ~6a!

with the shifted reduced temperature

t̂5t2vL21ln22/3S L

L0
D , ~6b!

and the field scaling variable

yrg5C2hL3/2ln1/4S L

L0
D , ~6c!

wherebyC1 and C2 are nonuniversal metric factors. Let u
note that we have replaced the constantsv8 and L08 which
arise from the renormalization group by the constantsv and
L0 that will be used as fit parameters in the finite-size scal
analysis.

It is also important to point out that the terms that res
from v andL0 in the temperature scaling variablexrg and the
field scaling variableyrg are merely corrections since they d
not contribute to the leading orders in the expansions

re-
4-2
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t̂ L ln1/6S L

L0
D 5

L→`

tL ln1/6~L !1vO„ln21/2~L !…

1tL ln~L0!O„ln25/6~L !…, ~7a!

hL3/2ln1/4S L

L0
D 5

L→`

hL3/2ln1/4~L !1hL3/2ln~L0!O„ln23/4~L !….

~7b!

However, due to the slow convergence of the logarithms
pearing at the upper critical dimension these corrections
substantial for the quality of the data collapse in the fini
size scaling analysis, as will be discussed in Sec. IV@see also
Sec. IV~B! in Ref. @2#, and Ref.@16##.

In the following we derive the finite-size scaling forms
the quantities that were considered in the simulations. Le

s̄5
1

Ld (
j 51

Ld

sj ~8!

denote the average of the spin variablessj , these quantities
are the magnetizationm(t,h;L)5^s̄& and the susceptibility
x(t,h;L)5bLd(^s̄2&2^s̄&2), whose finite-size scaling form
can be obtained by taking derivatives of the singular par
the reduced free energy density, Eq.~5!, according to

m~ t,h;L !52
]

]h
f s~ t,h;L !;C2L21/2ln1/4S L

L0
DYm~xrg ,yrg!,

~9a!

b21x~ t,h;L !52
]2

]h2
f s~ t,h;L !

;C2
2L ln1/2S L

L0
DYx~xrg ,yrg!. ~9b!

We also consider the dimensionless Binder cumulant@18#

U(t;L)512^ s̄4&/(3^s̄2&2) that can be evaluated from th
susceptibility x(t,h;L) and the nonlinear susceptibilit
x (nl)(t,h;L) using the identity@19#

U~ t;L !52
x (nl)~ t,0;L !

3bL2x2~ t,0;L !
, ~10!

wherex (nl)(t,h;L) is given by

b23x (nl)~ t,h;L !52
]4

]h4
f s~ t,h;L !

;C2
4L4lnS L

L0
DYx(nl)~xrg ,yrg!. ~11!

Hence, the Binder cumulant scales as

U~ t;L !;YU~xrg!, ~12!
03610
p-
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-
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whereYU(x)[2Yx(nl)(x,0)/@3Yx
2(x,0)#. Since the ensemble

averageŝ s̄2m11& with mPN0 vanish in the absence of a
external field, we, in addition, analyze the magnetizat
mabs(t,h;L)5^us̄u& and the susceptibility xabs(t,h;L)
5bLd(^ s̄2&2^us̄u&2). It is understood that these quantitie
also fulfill the finite-size scaling forms ofm(t,h;L) and
x(t,h;L), Eqs. ~9!, respectively with the correspondin
UFSS functionsYmabs

(x,y) andYxabs
(x,y).

III. MEAN-FIELD THEORY

An appropriate description of spin systems of dimensio
L3L3•••3L5Ld with mean-field-like~classical! critical
behavior can be achieved by the mean-field theory emplo
by Brézin and Zinn-Justin@20# and Rudnicket al. @21#. This
theory, also known as zero mode approximation, yields
contrast to conventional mean-field theories a rounded t
sition for finite systems. In the thermodynamic limitL→`
the usual power laws with the expected mean-field value
the critical exponents can be recovered.

In the following, this theory is reviewed and used
evaluate analytical expressions for the finite-size sca
functions defined in the preceding section in order to co
pare them to the numerical data, as it is demonstrated in
IV. The basis of this evaluation is the reduced GLW Ham
tonian in momentum space that corresponds to the unde
ing spin system with a long-range interactionJ(r )
}ur u2(d1s). It is given by~see, e.g., Ref.@22#!

H̄5LdS 1

2 (
k

~r 1Asukus!wkw2k2hw0

1
u

4! (
k1

(
k2

(
k3

wk1
wk2

wk3
w2k12k22k3D ~13!

with the temperaturelike parameterr}T2Tc
mf that measures

the deviation of the temperature from the mean-field criti
temperatureTc

mf , the reduced external fieldh, and the dan-
gerous irrelevant variableu.0. Each sum in Eq.~13! runs
for each componentkj of k over integer multiples of 2p/L
up to a momentum space cutoffkL5p/a (ukj u<kL) with the
lattice constanta.

The essential step of the zero mode approximation is
neglection of all modes except the zero modew[w0 in Eq.
~13!. This leads to the reduced zero mode Hamiltonian~see,
e.g., Ref.@21#!

H̄0~w!5LdS r

2
w21

u

4!
w42hw D ~14!

with the corresponding partition function

Z05E
2`

`

dwe2H̄0(w). ~15!

So the normalized probability distribution of the zero mo
is given by

P0~w!5
1

Z0
e2H̄0(w) ~16!
4-3
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and it can be used to evaluate averages of the form

^g~w!&05E
2`

`

dw g~w!P0~w!. ~17!

A further central quantity is the reduced free energy den
that is given byf 052L2dln(Z0) within the zero mode ap
proximation @19,20#. Using this expression and the ze
mode partition function defined in Eq.~15!, the rescaling
~see, e.g., Ref.@20#!

w→~uLd!21/4w ~18!

immediately yields the zero mode finite-size scaling form
f 0. It reads

f 0~r ,h;L !5L2df̃ 0~xmf ,ymf!1c~L ! ~19!

with the mean-field temperature and field scaling variabl

xmf5ru21/2Ld/2, ymf5hu21/4L3d/4, ~20!

and an additive termc(L) that is without significance in the
following since it is absent after taking derivatives
f 0(r ,h;L) with respect tor or h. Instead we focus on the
finite-size scaling function

f̃ 0~x,y!52 lnS E
2`

`

dw e2[(x/2)w21(1/24)w42yw] D ~21!

from which, as seen in the preceding section, the finite-s
scaling functions of other quantities like the magnetizationm
and the susceptibilityx follow.

The asymptotics of this function are given by

f̃ 0~x,0! ;
x→2`

2
3

2
x21

1

2
lnS uxu

4p
D , ~22a!

f̃ 0~x,0! ;
x→1` 1

2
lnS x

2p
D , ~22b!

f̃ 0~0,y! ;
y→6`

2S 81

32
D 1/3

uyu4/3. ~22c!

Following the convention suggested in Ref.@23#, the normal-
ized finite-size scaling functionYmf(x,y) of the reduced free
energy density should be defined such that their asympto
read

Ymf~x,0! ;
x→2`

2x2, ~23a!

Ymf~0,y! ;
y→6`

2uyu4/3 ~23b!

instead of the leading orders in Eqs.~22!. This requirement
fixes some arbitrariness of the reduced free energy den
finite-size scaling function and can be fulfilled by a rescal
of the parametersr and u, which are the only phenomeno
logical quantities entering the reduced zero mode Ham
03610
y

f

e
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tonian, Eq.~14!. Replacingx and y in Eqs. ~22! explicitly
with the mean-field scaling variablesxmf andymf from Eqs.
~20!, the rescaling

r→ 3A3

4
r , u→ 81

32
u ~24!

leads to a cancellation of the corresponding coefficients
2xmf

2 and2uymfu4/3 and one obtains the desired asymptoti
It is important to note that we do not alter the definitions
xmf and ymf due to this rescaling, but the scaling functio
itself. Starting from the zero mode partition function, E
~15!, with the rescaled parametersr and u, we, after the
procedure discussed above, finally end up with

Ymf~x,y!52 ln„J0~x,y!1J0~x,2y!…, ~25!

where

Jm~x,y!5E
0

`

dwwme2[(3A3/8)xw21(27/256)w42yw] , ~26!

instead off̃ 0(x,y) given in Eq.~21!.
Having defined the reduced free energy density finite-s

scaling function, in the following the finite-size scalin
forms and the corresponding zero mode finite-size sca
functions of the quantities considered in the preceding s
tion will be derived. Since the quantitiesmabs(t,h;L) and
xabs(t,h;L) cannot be evaluated by taking derivatives of t
reduced free energy density, we instead make use of the
erage defined in Eq.~17!. Setting hereg(w)5wm andg(w)
5uwum, respectively, the rescaling of the parametersr andu
@Eq. ~24!# and the rescaling of the zero mode@Eq. ~18!#
immediately yields the finite-size scaling forms of these a
erages. They read

^wm&05~uLd!2m/4Y(m),mf~xmf ,ymf!, ~27a!

^uwum&05~uLd!2m/4Yabs
(m),mf~xmf ,ymf!, ~27b!

with the finite-size scaling functions

Y(m),mf~x,y!5
Jm~x,y!1~21!mJm~x,2y!

J0~x,y!1J0~x,2y!
, ~28a!

Yabs
(m),mf~x,y!5

Jm~x,y!1Jm~x,2y!

J0~x,y!1J0~x,2y!
. ~28b!

Since, as discussed in Ref.@20#, the zero modew is related to
the order parameter fieldf(r ) in real space via

w5
1

Ld (
j 51

Ld

f~r j ! ~29!

and consequently corresponds to the average order param
per volume, one immediately obtains the finite-size scal
forms of the quantities defined in Sec. II, using Eqs.~27!.
Due to this correspondence, the magnetizationm(r ,h;L) and
the susceptibilityx(r ,h;L) are given by

m~r ,h;L !5^w&0 , ~30a!

b21x~r ,h;L !5Ld~^w2&02^w&0
2! ~30b!
4-4



-

cu

ins

e
b
te

t

n

o-
n
e
gh

e

a
y

-

n

nc-
e

. II
nd

ical

ty

to
III,
ing

are
ing

died

e of

l
ight
size

r-
t

UNIVERSAL FINITE-SIZE SCALING ANALYSIS OF . . . PHYSICAL REVIEW E 69, 036104 ~2004!
and therefore, according to Eq.~27a!, scale as

m~r ,h;L !5u21/4L2d/4Ym
mf~xmf ,ymf!, ~31a!

b21x~r ,h;L !5u21/2Ld/2Yx
mf~xmf ,ymf! ~31b!

with the zero mode finite-size scaling functionsYm
mf(x,y) and

Yx
mf(x,y). The finite-size scaling forms of the quantities

mabs~r ,h;L !5^uwu&0 , ~32a!

b21xabs~r ,h;L !5Ld~^w2&02^uwu&0
2! ~32b!

are identical to Eqs.~31!, respectively, with the correspond
ing finite-size scaling functionsYmabs

mf (x,y) andYxabs

mf (x,y). A

further quantity of interest is the dimensionless Binder
mulant

U~r ;L !512
^w4&0

3^w2&0
2U

h50

~33!

for which within the zero mode approximation one obta
the scaling form

U~r ;L !5YU
mf~xmf! ~34!

with the finite-size scaling functionYU
mf(x).

All zero mode finite-size scaling functionsYi
mf(x,y) can

be expressed as combinations of the functionsJm(x,y) de-
fined in Eq. ~26! with m5$0,1,2,4%. Since to analyze the
critical behavior, as it is done in the MC simulations, eith
the temperature scaling variable or the field scaling varia
is kept at its critical point value, it is sufficient to evalua
Jm(x,0) andJm(0,y) for the pertinent values ofm. Analyti-
cal expressions for the needed functions can be found in
Appendix.

IV. MONTE CARLO RESULTS

In this section we present the results of MC simulatio
that were carried out for the model Eq.~2! with
(v i ,v' ,J)5(1,1,0). We have used the Wolff cluster alg
rithm @24# for long-range spin models proposed by Luijte
and Blöte @1#. To study the properties of the model in th
presence of an external magnetic field, a histogram rewei
ing technique@25# was used.

In the simulations quadratic spin systems withLªL i
5L'5$32,64,128,256,512,1024% were considered and w
started with recording the magnetizationmabs, the suscepti-
bilities x andxabs, and the Binder cumulantU at zero field
for various temperatures close to the corresponding me
field critical temperatureTc

mf . This temperature is given b

Tc
mf5 J̃(0) ~see, e.g., Ref.@26#! whereJ̃(k) denotes the Fou

rier transform of the pair coupling Eq.~2b!. Setting the cou-
pling constant toJ50 the evaluation of this expressio
yields, the divergent term atr50 is excluded,
03610
-

r
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he
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mf5 ( 8

rPZ2

v ir i
21v'r'

2

ur u5
5

1

2
~v i1v'!QS 3

2D ~35!

with the two-dimensional lattice sum@27#

Q~s!5412sz~s!FzS s,
1

4D2zS s,
3

4D G , ~36!

where z(s,a) denotes the generalized Riemann Zeta fu
tion. Settingv i5v'51, the mean-field critical temperatur
takes the value

Tc
mf5QS 3

2D.9.0336. ~37!

According to the finite-size scaling relations listed in Sec
the UFSS functions were evaluated from the MC data a
plotted against the temperature scaling variablexrg ~see Fig.
2!. The data collapse was achieved by adjusting the crit
temperatureTc[Tc(`) and the parametersv and L0 in the
following way. First we determinedL0 from the requirement
that the maximum of the scaled susceptibili
Txabs(t,0;L)L21ln21/2(L/L0) collapses for differentL @Fig.
2~b!#, as this peak height is independent ofTc andv. After
that we adjustedTc andv until the scaled cumulantU(t;L)
vs xrg @Eqs. ~12! and ~6a!# collapses@Fig. 2~d!# and fits the
well known critical value@2,20#

YU~0!512

GS 1

4D 4

24p2
50.27052 . . . ~38!

at xrg50. Finally, in order to compare the numerical data
the zero mode finite-size scaling functions listed in Sec.
these functions were fitted to the numerical data by tun
the nonuniversal metric factorsC1 andC2. The values of all
parameters as they were determined from this analysis
listed in Table I. The whole data analysis was done us
FSSCALE @28#.

In addition to the temperature dependence we also stu
the dependence of the quantitiesm, mabs, x, andxabs on an
external field at the temperature

Tc~L !5Tc~`!F11vL21ln22/3S L

L0
D G ~39!

that can be regarded as an effective critical temperatur
the finite system~see, e.g., Ref.@19#!. Note that tc(L)
5Tc(L)/Tc(`)21 corresponds to the value oft for which
the shifted reduced temperaturet̂ as defined in Eq.~6b! and
consequently the temperature scaling variablexrg @Eq. ~6a!#
vanishes, ast̂5t2tc(L). Due to this choice the numerica
data obtained at this temperature and nonzero fields m
then be compared to the corresponding zero mode finite-
scaling functionsYi

mf(0,y) within a finite-size scaling plot.
Therefore we stored for each of the system lengthsL
5$16,32,64,128,256% a magnetization histogram at the co
responding temperatureTc(L) and zero external field, i.e., a
4-5
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FIG. 2. ~Color online! Finite-size scaling plot of the magnetizationmabs(t,0;L) ~a!, the susceptibilityxabs(t,0;L) ~b!, the susceptibility
x(t,0;L) ~c!, and the Binder cumulantU(t;L) ~d!, vs scaling argumentxrg . The corresponding zero mode finite-size scaling functio
Yi

mf(x,0) are displayed as solid lines. Each data point was obtained by averaging over 105 MCS.
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xrg5yrg50. Using these histograms, the considered qua
ties were extrapolated to nonzero fields@25# and plotted as
implied by their finite-size scaling forms~see Fig. 3!. The
values of the fit parameters required for these plots are ta
consistently as they were determined from the tempera
runs~cf. Table I!. Since the reweighting technique allows th
extrapolation of the quantities to arbitrary values of the
ternal field, the data are displayed as continuous lines.

Within the intervals of the scaling variablesxrg and yrg
that were considered in the simulations we find excell
agreement of the MC data with the zero mode theory.
Figs. 2~a,b! merely for negative values of the temperatu
scaling variablexrg remarkable deviations occur and the M
data with increasing system sizeL converge to the corre

TABLE I. Values of the fit parameters used throughout th
work.

Tc(`) L0 v C1 C2

8.0302(3) 3.0(2) 1.16(2) 0.735(10) 0.92(1)
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sponding zero mode finite-size scaling function. This eff
indicates the presence of further corrections that are expe
to vanish in the limitL→` ~see also Ref.@29# that refers to
the five-dimensional short-range nearest neighbor Is
model!.

The deviations visible in Fig. 3 for large values of th
field scaling variableyrg are due to the finite size of th
histograms that were used to obtain the curves shown t
by means of the reweighting technique. They originate fr
the fact that a magnetization histogram of sizeK that is based
on K values of the average spins̄ @Eq. ~8!# sampled in a MC
simulation, in the mean does not contain values ofs̄ occur-
ring in a simulation with a lower probability than 1/K. As
will be demonstrated in the following, these deviations c
also be reproduced within the zero mode theory by trunc
ing the zero mode probability distributionP0(w), Eq. ~16!,
from which we start and perform the rescaling, Eq.~24!.
After that we setxmf50 andymf50 since the magnetization
histograms we used to obtain the curves shown in Fig
were recorded in the simulations also for vanishingxrg and
yrg . The corresponding normalized zero mode probabi
distribution denoted asP0,c(w) then reads
4-6
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FIG. 3. ~Color online! Finite-size scaling plot of the magnetizationm„tc(L),h;L… ~a! and mabs„tc(L),h;L… ~b!, and the susceptibility
x„tc(L),h;L… ~c! andxabs„tc(L),h;L… ~d!, vs scaling argumentyrg . The size of the histograms that were used to obtain the curves amo
K523106 MCS for each system lengthL. The zero mode finite-size scaling functionsYi

mf(x,y;K) are plotted as solid lines where the cuto
parameter takes the valueqL(23106).3.2201~see text!.
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P0,c~w!5~uLd!1/4YP0,c

mf
„~uLd!1/4w… ~40a!

with the zero mode finite-size scaling function

YP0,c

mf ~q!5
33/4

2GS 1

4D e2(27/256)q4
~40b!

and hence decreases monotonically for increasinguwu. So to
reproduce the effect that is due to the finite size of the h
tograms we chop the tails of this distribution by limiting th
integration range in Eq.~17! and the zero mode partitio
function, Eq.~15!, to a finite interval@2wL ,wL#. To make
an appropriate definition of the cutoff parameterwL

[wL(K).0 we use an estimation that is known from e
treme value statistics@30#. We assume that in the mean on
one out ofK measured values of the average order param
w lies outside the interval ]2wL ,wL@ , i.e., it fulfills uwu
>wL . This implies
03610
-

er

P~ uwu>wL!52E
wL

`

dwP0,c~w!5
1

K
~41!

from which the cutoffwL is implicitly defined. Replacing
P0,c(w) according to Eqs.~40! the evaluation of the resulting
integral yields

2E
qL

`

dqYP0,c

mf ~q!5

GS 1

4
,

27

256
qL

4 D
GS 1

4D 5
1

K
, ~42!

whereqL5(uLd)1/4wL and G(a,b) denotes the incomplete
Gamma function. Expanding this expression and separa
qL[qL(K) yields to leading order a logarithmic dependen
on the histogram sizeK of the form

qL~K ! ;
K→`A8

3F43 lnS K

K0
D2 lnX43 lnS K

K0
D CG1/4

~43!
4-7
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with the constantK05(3/4)3/4G( 1
4 ).

To demonstrate the validity of the definition of the cuto
wL , respectively,qL , Fig. 4 shows a finite-size scaling plo
of the critical magnetization histogramHc that was recorded
for xrg5yrg50. Starting from the finite-size scaling form o
the magnetization, Eq.~9a!, it is straightforward to show tha
this histogram scales as

Hc~ s̄;L !;C2
21L1/2ln21/4S L

L0
DYHc

~qrg! ~44!

with the finite-size scaling functionYHc
(q) and the scaling

variableqrg5C2
21s̄L1/2ln21/4(L/L0). As is expected also in

Fig. 4, the MC data are found to be in very good agreem
with the zero mode expressionYP0,c

mf (q) @Eq. ~40b!# of the

FIG. 4. ~Color online! Finite-size scaling plot of the critica

histogram Hc( s̄;L). The size of the histogram depicted he
amountsK5106 MCS for each system lengthL. According to Eq.
~42! this corresponds to a cutoff value ofqL(106).3.1728. The
value of the fit parameterL0 and the nonuniversal metric factorC2

are taken as they are listed in Table I.
03610
nt

finite-size scaling functionYHc
(q). It furthermore turns out

that all data points lie accurately within the interv
@2qL(K),qL(K)# that corresponds to the size of the di
played histogram. The zero mode finite-size scaling fu
tions Yi

mf(x,y;K) that were evaluated using the truncat
zero mode probability distribution with the cutoffqL(K) are
also shown in Fig. 3, and nicely agree with the extrapola
data.

Before finishing this section we also want to discuss
importance of the corrections to the leading orders in
expansions in Eqs.~7! that are determined by the paramete
L0 andv. For that purpose Figs. 5~a, b! show the finite-size
scaling plot of the susceptibilityxabs(t,0;L) versus scaling
variablexrg @Fig. 2~b!# where we setv50 in Fig. 5~a! and
L051 in Fig. 5~b!. The values of the other parameters ent
ing the plots are taken from Table I. As is expected, negle
ing one of the corrections causes a significant displacem
between the MC data and the zero mode finite-size sca
function Yxabs

mf (xrg,0). This effect could partially be compen

sated by readjusting the remaining fit parameters, but
procedure would in the case of Fig. 5~a! lead to a wrong
determination of the critical temperatureTc(`) ~see also dis-
cussions in Ref.@31# that refer to spin models above th
upper critical dimensionality!.

V. CONCLUSIONS

We have introduced a two-dimensional long-range s
model that displays both isotropic and anisotropic ph
transitions and, in particular, strongly anisotropic phase tr
sitions. As a first stage the critical behavior of the model
the isotropic case for which it is found to be at its upp
critical dimensionality was investigated. For that purpose
have carried out Monte Carlo simulations and studied
temperature and field dependence of several quantities.
ing results of the renormalization group, the numerical d
obtained for different system sizes were analyzed by me
of a finite-size scaling analysis. It turns out that beside
size-dependent shift that has already been discussed in
literature a characteristic lengthL0 that was inserted into the
FIG. 5. ~Color online! Finite-size scaling plot of the susceptibilityxabs(t,0;L) without the shift correction (v50) ~a! and with
L051 ~b!.
4-8
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logarithms is an important correction that must not be
glected.

Furthermore, the collapsed data were compared to
zero mode~mean-field! theory and found to be in excellen
agreement. It turns out that the logarithmic corrections ty
cally occurring at the upper critical dimensionality do on
enter the finite-size scaling functions through their arg
ments, whereby these functions were derived from z
mode theory. This shows that at least in the present case
concept of universal finite-size scaling functions can be
tended to the upper critical dimensionality.

Finally we note that the numerical results strongly in
cate the validity of the zero mode theory at the upper criti
dimensionality and might shed new light on recent cont
versial discussions about its correctness ford>du @32,29#.

As it will be subject of a future work it is desirable t
extend the analysis shown above to the anisotropic casv i
Þv' . In particular, the critical behavior of the model shou
be investigated when approaching the strongly anisotro
casesv i522v' and22v i5v' , respectively.
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APPENDIX: THE FUNCTIONS Jm„x,0… AND Jm„0,y…

The evaluation of the function Jm(x,0) with
MATHEMATICA @33# yields

Jm~x,0!5323(m11)/44mFGS m11

4 D 1F1S m11

4
;
1

2
;x2D

22xGS m13

4 D 1F1S m13

4
;
3

2
;x2D G ~A1!

with the confluent hypergeometric function1F1(a;b;x).
This expression is valid forxPR andmPR.21 and can be
simplified further for a given integer value of the parame
m. For m5$0,1,2,4% one obtains

J0~x,0!5323/4ex2/2Y1/4~x!, ~A2a!

J1~x,0!5
4

3
Ap

3
ex2

erfc~x!, ~A2b!
03610
-

e

i-

-
o

the
-

l
-

ic

-

r

J2~x,0!5
8

9
321/4ex2/2@Y3/4~x!2xY1/4~x!#, ~A2c!

J4~x,0!5
64

81
31/4ex2/2@2x2Y1/4~x!23xY3/4~x!2Y5/4~x!#,

~A2d!

where the function

Ya~x!5p~x2!aF I 2aS 1

2
x2D2sgn~x!I aS 1

2
x2D G ~A3!

with the modified Bessel function of the first kindI a(x) has
been introduced, and erfc(x) denotes the complementary e
ror function. The functionYa(x) is well behaved through
zero argument for the pertinent noninteger positive value
a. Assumingx.0, Eq. ~A3! simplifies to

Ya~x! 5
x.0

2x2aKaS 1

2
x2D sin~pa! ~A4!

with the modified Bessel function of the second kindKa(x).
An analogous treatment of the functionJm(0,y) results in

Jm~0,y!5
1

4 (
k51

4 S 256

27 D (m1k)/4 yk21

G~k!
GS m1k

4 D
32F4S m1k

4
,1;

k

4
,
k11

4
,
k12

4
,
k13

4
;
y4

27D ,

~A5!

where pFq(a1 , . . . ,ap ;b1 , . . . ,bq ;x) denotes the general
ized hypergeometric function. This expression is also va
for yPR andmPR.21 and cannot be simplified further fo
a given value ofm involving less general functions. Finall
let us note that the functionJm(x,y) fulfills the recursion
relations

Jm12~x,y!52
8

3A3

]

]x
Jm~x,y!, ~A6a!

Jm11~x,y!5
]

]y
Jm~x,y! ~A6b!

as follows from Eq.~26!.
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