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Universal finite-size scaling analysis of Ising models with long-range interactions
at the upper critical dimensionality: Isotropic case
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We investigate a two-dimensional Ising model with long-range interactions that emerge from a generaliza-
tion of the magnetic dipolar interaction in spin systems with in-plane spin orientation. This interaction is, in
general, anisotropic whereby in the present work we focus on the isotropic case for which the model is found
to be at its upper critical dimensionality. To investigate the critical behavior the temperature and field depen-
dence of several quantities are studied by means of Monte Carlo simulations. On the basis of the Privman-
Fisher hypothesis and results of the renormalization group the numerical data are analyzed in the framework of
a finite-size scaling analysis and compared to finite-size scaling functions derived from a Ginzburg-Landau-
Wilson model in zero modémean-field approximation. The obtained excellent agreement suggests that at
least in the present case the concept of universal finite-size scaling functions can be extended to the upper
critical dimensionality.
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[. INTRODUCTION with magnetic Ising spin variables= =1, the spin-spin dis-
tance vector;;, and an external fiel@. The pair coupling
In the last decade, spin models with long-range interacd(r) is given by
tions were the subject of several extensive Monte Carlo stud-

ies. Utilizing an efficient cluster algorithifl] these studies 24 2

o : @ ey
were addressed to the verification of some unproved predic- J(r)=36 1+ 5 (2b)
tions on the critical behavior of spin models with algebra- Ir]

ically decaying long-range interactiofi]. Furthermore, the _ _

crossover from Ising-like to classical critical behavior was@nd consists of both a ferromagnetic short-range nearest
investigated 3,4] and first numerical results on the critical N€ighbor exchange coupling with the coupling constant
behavior of the dipolar in-plane Isin@DIPI) model were =0 and a long-range contribution, whergandr, are the
obtained 5]. This two-dimensional model displays a strongly components of the vectorparallel and perpendicular to spin
anisotropic phase transition, i.e., the correlation lengths ifrientation. Using this general form of the pair coupling

direction parallel and perpendicular to spin orientation di-J(r), several well known spin systems can be mapped onto
verge in the infinite systerflet t>0) as[5] this model by making an explicit choice of the parameters

o), o, , andJ. With o= —2w, >0, and for symmetry rea-
) o ) Ay sons—2w|=w, >0, andJ>0 the DIPI model is recovered,
fﬁ (O~ge-", &~ & ™ D) and if )=, >0 andJ=0 Eq.(2a corresponds to an Ising
model with an isotropic ferromagnetic long-range interaction
at the critical point, where botfj#%, and v # v, , andt  algebraically decaying a¥(r)«|r|~*. Another special case
=(T—T)/T. denotes the reduced temperature. Except thés the dipolar Ising model with perpendicular spin orientation
anisotropy exponent= /v, neither any numerical esti- [10,11 that can be obtained fap;=w, <0 andJ=>0.
mates of the critical exponents exist for the DIPI model, nor Figure 1 shows the ground state phase diagram of the
is it clear whether the model exhibits Lifshitz type critical Model whereby we took into account four different ground
behavior[6] as it is observed, e.g., in the anisotropic nextState spin configurations: ttferromagnetic statavhere all
nearest neighbor Ising modgi—9]. spins point to the same directi¢fm), the totally antiferro-

To address such questions in a broader context we presefifagnetic statethat is referred to as checkerboard state
a two-dimensional long-range spin model that arises fronfcheck, andcommensurate stripe domain staiegh a do-
generalizing the DIPI model by introducing an additionalMain wall orientation parallelmod |)) and perpendicular
parameter. Assuming XL, geometry and periodic bound- (mod.) to spin orientation and the periotl§ , . Dependent

ary conditions this model is described by the Hamiltonian ©n the values of the quotients)/J andw, /J all considered
spin configurations were found as stable ground states. Due

to symmetry reasons the arrangement of the corresponding
H=— 1 E SiJ(rij)Sj_BE s (2a) phases in Fig.. 1 is symmetric with respgct to the .I'm‘p
2 {7 i =, . The periodsN; , of the stripe domain states diverge
when approaching the dashed lines in Fig. 1.
The region in parameter space where the model displays a
*Electronic address: daniel@thp.Uni-Duisburg.de ferromagnetic ground state is of particular interest to us. In
"Electronic address: fred@thp.Uni-Duisburg.de that region the observed phase transitions are isotr@pie
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10— — —T—— tions decaying ag(r)o|r| (4" ). At the upper critical di-
\ | mension, that is given bg,=2 for c=1 (see Sec.)| the
\\ singular part of the reduced free energy density was found to
St \ fm — scale asii=1)
AY
mod | \ .
=3 \ fs(t,h;L)~sz( u- 3L |n1’6( —)
0 z /
8 S~ 0
RN L L
_5 \\} X t_vIL—lln—2/3< _,) ‘| ,L3/2|n1/4( _’) h)
check mod L Lo Lo
(4)
L L " [} "
U T 0 5 10

with the reduced temperatutethe reduced external fiell
ik = BB where B=1/(kgT) denotes the inverse temperature
(we setkg=1 throughout this papgrand the so-called dan-
gerous irrelevant variable[14,15. Note that we rewrote the
formula given in Ref[2] in terms of the parametets and
é__(’), whereL | can be regarded as a reference length that fixes
the length scale in the logarithnisee also Ref.16]), and we
absorbed constant factors info The symbol~ means “as-
isotropig when wj=w, (w|#w,) whereby in the present ymp_tot_ically equal” and, u_nless stated otherwise, refers to
work we draw our attention to the isotropic ferromagneticthe limit (t,h,L)—(0,0#) with tL In¥%(L) andhL¥an"%(L)
long-range case fixed [cf. Eq. (7)].
Proceeding from Eq4) we adapt the Privman-Fisher hy-
w=w,>0, J=0 ©) pothesig 17] and propose the finite-size scaling form of the
singular part of the reduced free energy density

before we turn to the case of an anisotropic pair coupling
[12]. It is known that the upper critical dimension of long- fs(t,h;L)~L’2Y(xrg,y,g) 5)
range spin models with ferromagnetic interactions decaying
as J(r)x|r|~@* ) is given by d,=20 [13]. Comparison with the universal finite-size scalingUFSS function
with the pair couplingl(r) defined in Eq(2b) yields in the  Y(x,y). The arguments of this function correspond to the
isotropic case, Eq(3), c=1 for a two-dimensional system temperature scaling variable
and consequentlg=d, =2.

So in this paper we investigate the critical behavior of the R
model at its borderline dimensionalitl, by means of Monte Xrg= CqtL In*/%
Carlo (MC) simulations and finite-size scaling methods. For
that purpose in the following Sec. Il the finite-size scaling . .
form of the free energy density is discussed and the finite™ith the shifted reduced temperature
size scaling relations of the considered quantities are derived
as they are used for the finite-size scaling analysis. These
relations define finite-size scaling functions for which in Sec.
[l we evaluate analytical expressions in the framework of
the so-called zero mode theory that is based on the Ginzburgmd the field scaling variable
Landau-Wilson(GLW) model. In the last Sec. IV the zero
mode results are compared to numerical data within a finite-

L
size scaling analysis. Yrg=C2h L3’2In1’4( L—) : (60)
0

FIG. 1. The mode[Egs. (2)] exhibits a ferromagnetic ground
state in the region denoted by “fm.” The dashed lings= —2w,
>0 and —2wj=w, >0, respectively, and the origimj=w, =0
also represent ferromagnetic ground states. All other regions corr
spond to modulated spin configuratiofsee text

L
L_) (6a)

0

fotoyL tin 2

o
L (6b)

0

Il FINITE-SIZE SCALING RELATIONS wherebyC, and C, are nonuniversal metric factors. Let us

To study the critical properties of the model in the isotro-note that we have replaced the constantsand L, which
pic long-range case we have carried out a finite-size scalingrise from the renormalization group by the constantnd
analysis of MC data. This analysis requires the finite-size_g that will be used as fit parameters in the finite-size scaling
scaling relations of the quantities that were considered in thanalysis.
simulations. It is also important to point out that the terms that result
Via a renormalization group approach, Luijten andtBlo fromuv andL, in the temperature scaling variablg and the
[2] derived the scaling form of the free energy density offield scaling variable/,, are merely corrections since they do
O(n) spin models with ferromagnetic long-range interac-not contribute to the leading orders in the expansions
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~ L \Loo WhereYU(i)E —YX(n|)(x,0)/[3Y)2((x,O)]. Since the ensemble
tL In'/ O] = tL InY%(L)+v0(n"Y4L)) averagegs°™!) with me N, vanish in the absence of an
0 external field, we, in addition, analyze the magnetization
+tL In(Lo)O(In~ L)), (7a  mydt,h;L)={|s|) and the susceptibility xy.p{t,h;L)

=BLY(s?)—([s])?). It is understood that these quantities
L \L—w also fulfill the finite-size scaling forms om(t,h;L) and
hL¥2nt — | = hL¥AnY4(L)+hL¥An(Ly)O(n ¥4 L)).  x(t,h;L), Egs. (9), respectively with the corresponding
Lo 7 UFSS functionsy,,  (x,y) andY,_ (X.y).

However, due to the slow convergence of the logarithms ap- lll. MEAN-FIELD THEORY

pearing at the upper critical dimension these corrections are An appropriate description of spin systems of dimensions
substantial for the quality of the data collapse in the finite-| x L x ... x L =LY with mean-field-like(classical critical
size scaling analysis, as will be discussed in Sedské also  pehavior can be achieved by the mean-field theory employed
Sec. IMB) in Ref.[2], and Ref[16]]. by Brezin and Zinn-Justifi20] and Rudnicket al.[21]. This
In the following we derive the finite-size scaling forms of theory, also known as zero mode approximation, yields in
the quantities that were considered in the simulations. Let contrast to conventional mean-field theories a rounded tran-
o sition for finite systems. In the thermodynamic linhit— o
- the usual power laws with the expected mean-field values of
Zl S; (8)  the critical exponents can be recovered.
= In the following, this theory is reviewed and used to
denote the average of the spin variabdes these quantities ?L:/r?(iltjigaes 3222251} (taﬁgressmn.s for thg flplte-S|ze scaling
R — o preceding section in order to com-
are the magnetizatiom(t,h;L)=(s) and the susceptibility pare them to the numerical data, as it is demonstrated in Sec.
x(t,h;L) = BLY((s*) —(s)?), whose finite-size scaling forms V. The basis of this evaluation is the reduced GLW Hamil-
can be obtained by taking derivatives of the singular part otonian in momentum space that corresponds to the underly-
the reduced free energy density, E§), according to ing spin system with a long-range interactiod(r)
«|r|~@*9) |t is given by(see, e.g., Ref22])

1
Ld

d
m(t,h;L)=— —f4(t,h;L)~C,L Y4n'4

; )
T Ym(xrgayrg)v — 1
dh Lo ©a H=L1 > ; (r+A,k[?) erp «—heg
u
9? +— Kk 13
B == (L) AT B PP (19
with the temperaturelike paramenech—TQ1f that measures
2y 1nl2 L the deviation of the temperature from the mean-field critical
C2LIn Y, (Xg. Vi) (9D) i :
Lo temperaturel ., the reduced external fiela, and the dan-

gerous irrelevant variable>0. Each sum in Eq(13) runs
We also consider the dimensionless Binder cumuld®  for each componerk; of k over integer multiples of 2/L
U(t;L)=1—(s*/(3(s?? that can be evaluated from the up to a momentum space cutéff= m/a (|k;|<k,) with the
susceptibility x(t,h;L) and the nonlinear susceptibility lattice constang.

x"™(t,h;L) using the identity19] The essential step of the zero mode approximation is the
neglection of all modes except the zero magke ¢, in Eq.
™M (t,0:L) (13). This leads to the reduced zero mode Hamiltor{see,
UtL)=——————, (10  e.g., Ref[21])
3BL x“(t,0;L)
1/ —1d r 2 u 4
where x("(t,h;L) is given by Ho(e)=L (E‘P TR (14)
Py with the corresponding partition function
B3 M (thiL)=— ——fy(t,hiL) }
on Zo= J dpeHol®), (15)

L
~C*L% Nl —
C2L In( LO)YX(n')(X’Q’yrg)' D 56 the normalized probability distribution of the zero mode

is given by
Hence, the Binder cumulant scales as

Pyl @)= ie—ﬁow (16)
U(t;L)~ Yu(Xeg), (12) a2
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and it can be used to evaluate averages of the form

(9(@))o= J:dsv 9(@)Po(@). 17

A further central quantity is the reduced free energy density 4

that is given byfo=—L " %n(Z,) within the zero mode ap-

proximation [19,20. Using this expression and the zero _

mode partition function defined in Eq15), the rescaling
(see, e.g., Ref.20])

1/4

e—(uLY ™~ (18

PHYSICAL REVIEW EG69, 036104 (2004

tonian, Eq.(14). Replacingx andy in Egs. (22) explicitly
with the mean-field scaling variables,; andy,; from Egs.
(20), the rescaling

81
u— 3—2U

3V3

r———r,

(24)
Ieads to a cancellation of the corresponding coefficients of
fand lymil“® and one obtains the desired asymptotics.
It is important to note that we do not alter the definitions of
Xm¢ @and ys due to this rescaling, but the scaling function

itself. Starting from the zero mode partition function, Eg.
(15), with the rescaled parametersand u, we, after the

immediately yields the zero mode finite-size scaling form ofProcedure discussed above, finally end up with

fo. It reads

fo(r,h;L) =L~ Fo(Xmt,Ymd) +C(L) (19

with the mean-field temperature and field scaling variables

71/2Ld/2' Y= hufl/4L3d/4'

Xmi=ru (20

and an additive terna(L) that is without significance in the

Y™(x,y)=—In(Eo(X,y) + Eo(X,~Y)), (25)

where

i

:m(x'y):fo d(P(Pme—[(3\3‘3/8)x<p2+(27/256)np4—y<p], (26)

instead off o(x,y) given in Eq.(21).
Having defined the reduced free energy density finite-size

following since it is absent after taking derivatives of scaling function, in the following the finite-size scaling

fo(r,h;L) with respect tor or h. Instead we focus on the
finite-size scaling function

TO(X,y):—m( jw d(pe[(xl2)¢2+(l/24)¢4y¢]) 1)

forms and the corresponding zero mode finite-size scaling
functions of the quantities considered in the preceding sec-
tion will be derived. Since the quantities,,{t,h;L) and

Xapd t,h;L) cannot be evaluated by taking derivatives of the
reduced free energy density, we instead make use of the av-
erage defined in Eq17). Setting hereg(¢)=¢™ andg(¢)

from which, as seen in the preceding section, the finite-size=|#|™, respectively, the rescaling of the parameteadu

scaling functions of other quantities like the magnetization
and the susceptibility follow.
The asymptotics of this function are given by

—~ X— — 0 | |
fo(x,00 ~ x + — , 22
0222
~ —+ee 1 X
Fo(x,0) ~ —In(—), (22b
2 2
1/3
~ y—*oe 81
fo0y) ~ —| = 3, 229
0(0y) (32) lyl (220

Following the convention suggested in RegZ3], the normal-
ized finite-size scaling functiod™(x,y) of the reduced free

energy density should be defined such that their asymptotics

read

X— — 0

Y™M(x,0) ~ —x?, (23a

y—
me(O,y) — |4/3

ly (23b

instead of the leading orders in Ed&2). This requirement

[Eq. (24)] and the rescaling of the zero modlEq. (18)]
immediately yields the finite-size scaling forms of these av-
erages. They read

(@M= (UL MY M-Mi(x e Vi), (279
(lel™o=(uL) ™G Xt ), (27D)
with the finite-size scaling functions
Em(X,y)+(=1)"Emn(X,~Y)

Y(m),mf X,y)= m . (28

O =T E oy T ey P8

ymmi _E~m(x YY)+ Em(X,—Y) o8k

Yo O E oy i By 2

Since, as discussed in RE20], the zero mode is related to
the order parameter fiel@(r) in real space via

(29

and consequently corresponds to the average order parameter
per volume, one immediately obtains the finite-size scaling
forms of the quantities defined in Sec. Il, using E(&7).

Due to this correspondence, the magnetizatign,h;L) and

the susceptibilityy(r,h;L) are given by

fixes some arbitrariness of the reduced free energy density

finite-size scaling function and can be fulfilled by a rescaling

of the parameters and u, which are the only phenomeno-

logical quantities entering the reduced zero mode Hamil-

(303
(30D

m(rvh;L):<(P>0!

B Ix(r,hL)=LY(¢?o—(¢)d)

036104-4
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and therefore, according to E(7a), scale as 2 2
g (:2 a) Tmf—zl w”rH+wlrL_1
mf—

3
— =3 0= @5
m(rhiL=u Y Yy, (310 S pE ey (2) %9

B B with the two-dimensional lattice sufi27]
B x(r,h L) =u" YL M (X v (31D)

1 3
— 21— | = —
with the zero mode finite-size scaling functio‘ﬂﬁf(x,y) and O(s)=4""°((s) 5(5,4 5( S’4 ' (36)
YTf(x,y). The finite-size scaling forms of the quantities
where {(s,a) denotes the generalized Riemann Zeta func-
Mand 1.0 L) ={(|¢|)o, (329  tion. Settingw|=w, =1, the mean-field critical temperature
takes the value
B xandr hiL)=LY(e?o—(lel)y) (32D 3
TM=0 E) ~9.0336. (37)

are identical to Eqs(31), respectively, with the correspond-

ing finite-size scaling function¥ (x,y) andY}' (x,¥). A According to the finite-size scaling relations listed in Sec. Il
further quantity of interest is the dimensionless Binder cuthe UFSS functions were evaluated from the MC data and

mulant plotted against the temperature scaling variahlgsee Fig.
2). The data collapse was achieved by adjusting the critical
(oo temperaturel ;=T() and the parameters andL, in the
u(r;L)y=1- 2 (33  following way. First we determinel from the requirement
3510 that the maximum of the scaled susceptibility

Txandt,0;L)L N YA(L/L,) collapses for different. [Fig.
for which within the zero mode approximation one obtains2(b)], as this peak height is independentTofandv. After

the scaling form that we adjusted; andv until the scaled cumulant (t;L)
Vs X [EQs. (12) and (6a)] collapsegFig. 2(d)] and fits the
U(r;L) =YD Xmp) (34  well known critical valug2,20]
4
with the finite-size scaling functiohr[j‘f(x). F(E)
All zero mode finite-size scaling functioné“f(x,y) can _ 4

Yu(0)=1— =0.270% ... 38
be expressed as combinations of the functighgx,y) de- u(0) 2472 38)

fined in Eq.(26) with m={0,1,2,4. Since to analyze the

critical behavior, as it is done in the MC simulations, eitherat x4=0. Finally, in order to compare the numerical data to
the temperature scaling variable or the field scaling variabléhe zero mode finite-size scaling functions listed in Sec. IlI,
is kept at its critical point value, it is sufficient to evaluate these functions were fitted to the numerical data by tuning

2 (X,0) andZ,,(0y) for the pertinent values ah. Analyti-  the nonuniversal metric factos; andC,. The values of all

cal expressions for the needed functions can be found in thearameters as they were determined from this analysis are

Appendix. listed in Table I. The whole data analysis was done using
FSSCALE[28].

In addition to the temperature dependence we also studied
the dependence of the quantities m,,s, x, andyxa,s0n an

In this section we present the results of MC simulationsexternal field at the temperature
that were carried out for the model Eqg2) with
(0,0, ,J)=(1,1,0). We have used the Wolff cluster algo-
rithm [24] for long-range spin models proposed by Luijten
and Blde [1]. To study the properties of the model in the
presence of an external magnetic field, a histogram reweighthat can be regarded as an effective critical temperature of
ing techniqug 25] was used. the finite system(see, e.g., Ref[19]). Note thatty(L)

In the simulations quadratic spin systems with=L;  =Tc(L)/T(*)—1 corresponds to the value offor which
=L, ={32,64,128,256,512,10P4were considered and we the shifted reduced temperaturas defined in Eq(6b) and
started with recording the magnetization,s, the suscepti- consequently the temperature scaling variabld Eq. (6a]
bilities x and xaps, and the Binder cumulany at zero field  yanishes, ag=t—t,(L). Due to this choice the numerical
for various temperatures close to the corresponding meantata obtained at this temperature and nonzero fields might
field critical temperaturdy". This temperature is given by then be compared to the corresponding zero mode finite-size
TM=J(0) (see, e.g., Ref26]) whereJ(k) denotes the Fou- scaling functionsY™(0,y) within a finite-size scaling plot.
rier transform of the pair coupling E¢Rb). Setting the cou- Therefore we stored for each of the system lengths
pling constant toJ=0 the evaluation of this expression ={16,32,64,128,236a magnetization histogram at the cor-
yields, the divergent term at=0 is excluded, responding temperaturg,(L) and zero external field, i.e., at

IV. MONTE CARLO RESULTS

TAL)=T() (39

L
1+vL1|n2/3(—)
Lo
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4— ) : . T T . T 0.5 T

~ L=32 « [ =32

+ L=64 + L=64

o L=128 0.4 o L=128 n

= [ =256 N = [ =256

« L=512 s« =512

« L=1024 03 e L=1024 | |

— Y™ (x ,0) ' — Y™ (x ,0)
Myps T8 _ Xabs 18

<
)

abs
abs

¢, m, ,0;)L" @/

2 el 12
C, Ty, (t.O:L)L I “(LIL,)
=

L | L L | L | 0 | L | L L | L |
4 Z 0 2 4 4 E;] 0 2 4
1/6 -1/2 1/6 -1/2
%, = C LIn “(L/Ly)-vin “(L/L )] %, =C,[tLIn P@iLy-vin @i

« L=32 |
S + L=64 ]
&l « L=128
3 « L =256
o~ « L=512
Ty « L=1024
= . mf -
o Y ,:0) 3
Q S
<
=
Nh
s ©
| \ L \ L | , | ) ) ) )
01— 3 0 2 4 0 5 0 > 5
_ 1/6 -12 1/6 <12
X = € [tLIn"(L/Ly)-vIn T (L/L )] X, =C [tLIn " (L/L)-vIn " (L/L)]

FIG. 2. (Color onling Finite-size scaling plot of the magnetizatiom,,{t,0;L) (&), the susceptibilityy,{t,0;L) (b), the susceptibility
x(t,0;L) (¢), and the Binder cumulari (t;L) (d), vs scaling argument,,. The corresponding zero mode finite-size scaling functions
Y™(x,0) are displayed as solid lines. Each data point was obtained by averaging 6WACE)

Xrg=Yrg=0. Using these histograms, the considered quantifqunding zero mode finite-size scaling _function. This effect
ties were extrapolated to nonzero fie[@®5] and plotted as indicates the presence of further corrections that are expected
implied by their finite-size scaling form&ee Fig. 3. The  to vanish in the limitL —c (see also Ref.29] that refers to
values of the fit parameters required for these plots are takdh€ five-dimensional short-range nearest neighbor Ising
consistently as they were determined from the temperatur@0de). o
runs(cf. Table ). Since the reweighting technique allows the _ The deviations visible in Fig. 3 for large values of the
extrapolation of the quantities to arbitrary values of the exJ1€ld scaling variabley, are due to the finite size of the
ternal field, the data are displayed as continuous lines. Biﬁggnngsomﬁ;v;’:\fe%ﬁ%;;Ctﬁgi'gutge_l_%%r;’%s;i;i?f;vtven fﬁgﬁze
Within the intervals of the scaling variableg, and e ; P ;
that were considered in the simula%ions Wee??nd ex}::rgellen%he fact that a magnetization rlstogram of szthat '_S based
agreement of the MC data with the zero mode theory. PN K values of the average sp&riEq. (8)] sampled in a MC
Figs. 2a,b merely for negative values of the temperatureSimulation, in the mean does not contain values ofccur-
scaling variablex,, remarkable deviations occur and the MC fing in @ simulation with a lower probability thankl/ As
data with increasing system site converge to the corre- will be demonstrated in the following, these deviations can
also be reproduced within the zero mode theory by truncat-

TABLE I. Values of the fit parameters used throughout this N9 the zero mode probability distributioR(¢), Eq. (16),

work from which we start and perform the rescaling, E84).
i After that we sek, =0 andy;=0 since the magnetization
histograms we used to obtain the curves shown in Fig. 3
TC(OC) LO U Cl C2 . . . . .
were recorded in the simulations also for vanishiggand
8.0302(3) 3.0(2) 1.16(2) 0.735(10) 0.92(1) Y- The corresponding normalized zero mode probability

distribution denoted a®, (¢) then reads
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FIG. 3. (Color onling Finite-size scaling plot of the magnetizatiomt.(L),h;L) (a) and mydt.(L),h;L) (b), and the susceptibility
x(te(L),h;L) (c) and xapdtc(L),h;L) (d), vs scaling argumenyt,;. The size of the histograms that were used to obtain the curves amounts

K =2x10° MCS for each system length The zero mode finite-size scaling functidﬁ@f(x,y; K) are plotted as solid lines where the cutoff
parameter takes the valag (2 10f)=3.2201(see text

Pod @) =(ULY™YE (UL ) (40 © 1
Plol=on=2] dePodo= @1
with the zero mode finite-size scaling function "
from which the cutoffe, is implicitly defined. Replacing
33/4 4 Po.d @) according to Eqs(40) the evaluation of the resulting
Y?;; (a) 2—167(27/256)‘ (40b integral yields
' 2r|

r 1 27,

| S 426 1
and hence decreases monotonically for increakjigSo to 71
reproduce the effect that is due to the finite size of the his- F(—) K
tograms we chop the tails of this distribution by limiting the 4
integration range in Eq(l7) and the zero mode partition .
function, Eq.(15), to a finite intervall — ¢, ,¢,]. To make wherqu=(uITd) Yo and.F(a,p) denotes. the mcomplete.
an appropriate definition of the cutoff parameter, Gamma funqnon. Expangﬂng this expres.slon'and separating
=¢,(K)>0 we use an estimation that is known from ex- a,=0,(K) yields to leading order a logarithmic dependence

treme value statistics30]. We assume that in the mean only on the histogram sizi of the form

one out ofK measured values of the average order parameter Koo \F 4 K
qA(K) ~ § —In(gln(K—o))

2fq daYp; (@)= (42)
A '

1/4
¢ lies outside the interval 3 ¢, ,04[, i.e., it fulfills |¢|

=@, . This implies

4 K
§|I’](K—O

(43
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finite-size scaling function(HC(q). It furthermore turns out

that all data points lie accurately within the interval
[—aA(K),qA(K)] that corresponds to the size of the dis-
played histogram. The zero mode finite-size scaling func-
tions Yimf(x,y;K) that were evaluated using the truncated
zero mode probability distribution with the cutaff, (K) are
also shown in Fig. 3, and nicely agree with the extrapolated
data.

10 2 i; ég Before finishing this section we also want to discuss the
+ L=64 b importance of the corrections to the leading orders in the
;. (2 ’52%2 i expansions in Eqg7) that are determined by the parameters

10°F Y™ ) Lo andv. For that purpose Figs.(&, b show the finite-size

e '8 scaling plot of the susceptibility,,{t,0;L) versus scaling

Li. I I - variablexq [Fig. 2(b)] where we seb =0 in Fig. 5a and

4 a2 1. 32 7 = A Lo=1 in Fig. 5b). The values of the other parameters enter-
4,y =C, SLIn " (L/Ly) ing the plots are taken from Table I. As is expected, neglect-

. o ) - ing one of the corrections causes a significant displacement

FIG. 4. (Co_lor onling Finite-size scaling plot of the critical petween the MC data and the zero mode finite-size scaling

histogram H(s;L). The size of the histogram depicted here fynction Y;‘fb(xrg,O). This effect could partially be compen-
aps

amountsk =10° MCS for each system length According to Eq. o . . .
(42) this corresponds to a cutoff value gf,(10°)=3.1728. The sateddby readj?jt!ngt;he remal?lrllg fit Tarz;n:eters, but this
value of the fit parametdr, and the nonuniversal metric fact@y, proce gre ,Wou In _e_ case of Fig(@ lead to a Wror,]g
are taken as they are listed in Table I. deter.mlna.tlon of the critical temperath@(OO) (see also dis-
cussions in Ref[31] that refer to spin models above the

with the constank o= (3/4)¥4r (2). upper critical dimensionaliy

To demonstrate the validity of the definition of the cutoff
¢, , respectivelyg, , Fig. 4 shows a finite-size scaling plot . . . ]
of the critical magnetization histograhh, that was recorded e have introduced a two-dimensional long-range spin
for x,4=y,=0. Starting from the finite-size scaling form of Model that displays both isotropic and anisotropic phase
the magnetization, Eq9a), it is straightforward to show that {ransitions and, in particular, strongly anisotropic phase tran-
this histogram scales as sitions. As a first stage the critical behavior of the model in
the isotropic case for which it is found to be at its upper
critical dimensionality was investigated. For that purpose we
have carried out Monte Carlo simulations and studied the
temperature and field dependence of several quantities. Us-
ing results of the renormalization group, the numerical data
_ obtained for different system sizes were analyzed by means
variable g,,=C; 'sL¥An"Y(L/L,). As is expected also in of a finite-size scaling analysis. It turns out that beside a
Fig. 4, the MC data are found to be in very good agreemengize-dependent shift that has already been discussed in the
with the zero mode expressidﬁ’;?;c(q) [Eq. (40b)] of the literature a characteristic length, that was inserted into the

V. CONCLUSIONS

_ L
Hc(s;L)~C2_1L1’2In‘1’4( L—) Yi (Arg) (44)
0

with the finite-size scaling functiolvy, (q) and the scaling

0.5 , — 0.5 : —
ey
< 04 = 04
2 =
= 03 Q03
~ ~
) <
g 02 202
&~ DS
%o 0.1 © 0.1
)
| L 1 n L | L 1 Il L L L L 1 L 1
04 2 0 ] 4 04 2 0 2 4

1/6 1/6 -1/2
%, =C tLIn "(L/L) X, =C,[iLIn "L-vin "L]

FIG. 5. (Color online Finite-size scaling plot of the susceptibility,,{t,0;L) without the shift correction (=0) (8 and with
Lo=1 (b).
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logarithms is an important correction that must not be ne- 8 )
glected. Ea(x,00= 53_1/4ex Y 34() = XY 14(X)],  (A2c)
Furthermore, the collapsed data were compared to the
zero mode(mean-field theory and found to be in excellent 64 ,
agreement. It turns out that the logarithmic corrections typi- = ,(x,0) = 8—131’4ex 2L 2%2Y 114(%) = 3XY 3/4(X) — Y54(¥) ],
cally occurring at the upper critical dimensionality do only
enter the finite-size scaling functions through their argu- (A2d)
ments, whereby_ these functions were derived from zerQhere the function
mode theory. This shows that at least in the present case the
concept of universal finite-size scaling functions can be ex-
tend_ed to the upper critical dimengionality. o Y (x) = m(x2)? Ia<£x2) —sgr{x)la(lxz)
Finally we note that the numerical results strongly indi- 2 2
cate the validity of the zero mode theory at the upper critical - ] i ]
dimensionality and might shed new light on recent contro-With tr_le modified Bessel function of the first king(x) has
versial discussions about its correctnessderd, [32,29. been introduced, and erfc( denotes the complementary er-
As it will be subject of a future work it is desirable to ror function. The functionY ,(x) is well behaved through
extend the analysis shown above to the anisotropic ease zero argu_ment for the pertmgnt nqnlnteger positive values of
+w, . In particular, the critical behavior of the model should & Assumingx>0, Eq.(A3) simplifies to
be investigated when approaching the strongly anisotropic

(A3)

= — — — H x>0 1
casesw) 2w, and —2w|=w, , respectively. Y (x) = 2x23Ka<§x2>sin(7Ta) (A4)
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APPENDIX: THE FUNCTIONS E,(x,0) AND =,,(0y)
. L _ +k Kk k+1 k+2 k+3 y*
The evaluation of the function Z,(x,0) with X ,Fy m A=, , , ;y—),
MATHEMATICA [33] yields 4 4" 4 4 4 27
(A5)
m+1 m+1 1
Em(x,0)=3‘3(m+1)’44m[1“ Fy ;_;XZ) where ;Fq(as, ... ap;b1, ... by;x) denotes the general-
4 4 2 ized hypergeometric function. This expression is also valid
m+3 m+3 3 forye R andme R™~* and cannot be simplified further for
—ZXF( 7 1Fq 7 ;E;X2> (A1) a given value ofm involving less general functions. Finally

let us note that the functio& ,(x,y) fulfills the recursion

with the confluent hypergeometric functiopF,(a:b;x).  relations

This expression is valid foxe R andme R™ ! and can be

. o . . 8 4
simplified further for a given integer value of the parameter = X V)= — T2 (x ABa
m. Form={0,1,2,4 one obtains e 2(X.Y) 3,3 ox =mxy), (A6a)
2 o(x,0) =34 2Y (%), (A2a) _ J_
Em+1(Xy)= E:m(x,y) (A6b)
— 4\/; X2
E1(x0= 3\ 3¢ erfax), (A20) s follows from Eq.(26).
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